Application of Machine Learning Techniques for Simplifying the Association Problem in a Video Surveillance System

نویسندگان

  • Blanca Rodríguez
  • Óscar Pérez
  • Jesús García
  • José M. Molina López
چکیده

Abstract. This paper presents the application of machine learning techniques for acquiring new knowledge in the image tracking process, specifically, in the blobs detection problem, with the objective of improving performance. Data Mining has been applied to the lowest level in the tracking system: blob extraction and detection, in order to decide whether detected blobs correspond to real targets or not. A performance evaluation function has been applied to assess the video surveillance system, with and without Data Mining Filter, and results have been compared.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

overview of ways to enhance the security of video surveillance networks using blockchain

In recent decades, video surveillance systems have an increasing development that are used to prevent crime and manage facilities with rapid diffusion of  (CCTV)cameras to prevent crime and manage facilities. The video stored in the video surveillance system should be managed comfortably, but sometimes the movies are leaking out to unauthorized people or by unauthorized people, thus violating i...

متن کامل

A Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources

The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...

متن کامل

Action Change Detection in Video Based on HOG

Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...

متن کامل

Machine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction

Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...

متن کامل

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005